\ survey of

using field-
aternational

slems using
)01.

PGAs using -
mference on

g logic syn-
wternational :

e approach
m on Field-

olver. IEEE
12004.
on Systems, -

dings of the
dcs, 1996,
wernational

Proceedings -~
sceedings of -

ation-based
)03, March

nstances of -
1 Computer- -

tructure in
dutomation

v. AMUSE:
IEEE/ACM

CHAPTER 30

MULTI-FPGA SYSTEMS: LOGIC
EMULATION

Russell Tessier
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst

Application specific integrated circuit (ASIC) verification has been an important
and commercially successful application of field-programmable gate arrays
(FPGAs) for over a decade. By mapping the logic of a new chip design onto
a system of FPGAs, logic emulation systems provide a high-speed simulation
of the design under development. As FPGA technology has matured and FPGA
logic capacity has grown, the use of FPGAs for functional logic emulation has
increased. Contemporary emulation systems often include a sizable number of
FPGA and memory devices organized in topologies that allow for efficient logic
evaluation and interFPGA communication.

Although the hardware architecture of an emulator plays an important role
in defining its effectiveness, system usability is often most closely tied to an
emulator’s compilation environment. To successfully map a complete ASIC
design to an emulation system, emulators require optimized compilation steps
that effectively distribute design logic across available FPGA resources and coor-
dinate intra-FPGA computation and inter-FPGA communication.

To illustrate contemporary approaches to FPGA-based logic emulation, we
profile here the hardware and software systems of a commercial FPGA-based
emulator. We show that, although off-the-shelf FPGAs have been used effec-
tively in a number of commercial logic emulators, several issues related to
FPGA compile time, design debugging, and emulator host interfacing must be
addressed to maintain their commercial viability.

30.1

BACKGROUND .

Research in reconfigurable computing has been active for well over a decade,
but the widespread commercial use of FPGAs as computing devices has been
limited. A notable commercial success story for reconfigurable computing has
been the use of FPGAs in ASIC logic verification. Over the past decade, the
number of transistors that can be integrated into application-specific devices has
grown exponentially with Moore’s Law, leading to an increased need to verify
design functionality prior to device fabrication. Currently, it is estimated that 60

Chapter 30 » Multi-FPGA Systems: Logic Emulation

to 80 percent of ASIC design time is spent performing verification [29], primarily
because of the high nonrecurring engineering (NRE) cost associated with ASIC
fabrication. The flexibility, parallelism, and reprogrammability of FPGAs make
them an ideal platform for verifying, prior to fabrication, the functionality of
ASIC designs. The availability of automatic FPGA mapping tools, such as those
described in Chapters 13, 14, and 17, have streamlined the design conversion
process, making the path from ASIC design to FPGA implementation mor
straightforward. ‘
FPGA-based logic verification is often used to augment or replace
microprocessor-based simulation of register transfer level (RTL) or gate-leve]
designs. The primary source of emulation speed improvement versus simulation
is the parallel implementation of circuit logic in the FPGA. While the amount
of logic evaluated per clock cycle in a microprocessor-based simulator is con-
strained by a limited number of ALUs (typically four or five at most), the num-
ber of per-cycle FPGA operations per emulation system is constrained only by
the available amount of total FPGA resources. This increase in logic evalua-
tion capacity comes at a cost. Unlike its simulation counterparts, FPGA-based
emulation can provide only functional verification for designs. Because the fun-
damental technology used to implement the emulated logic differs from the
source ASIC technology, postlayout timing information cannot be replicated.
As a result, FPGA-based emulators support only cycle-accurate logic evaluation
that is synchronized to design clock edges of the emulated design. Additionally,
circuit debugging for emulation systems is often more complex than debugging
with simulators. The sequential nature of simulation-based verification facili-
tates debugging and logic tracing. Logic analysis in a parallel verification envi-
ronment requires the use of specialized hardware resources and debugging tools.
FPGA-based emulators take on a variety of forms, ranging from single-
device systemns to commercial emulation systems that include hundreds of
devices. Although specific system implementations vary, most FPGA-based
logic emulators contain a tightly connected collection of FPGA devices. These
systems can be distinguished by their component FPGA and memory devices,
interconnection topology, design-mapping software, and external interfaces. The
system topology defines the positions of FPGAs and inter-FPGA communica-
tion resources. The need for multiple devices to emulate many ASIC designs is
‘due to the cost of FPGA reconfigurability. Because the silicon area overhead of
FPGA versus ASIC technology has been measured to be about 40x [15], FPGA
programming technology requires that an ASIC logic design be partitioned
across multiple FPGA devices to achieve the necessary device logic capacity.
For most emulators, there is a strong association between the physical archi-
tecture of the FPGA system and the compiler used to map user designs to the
emulator. Like the intra-FPGA mapping flow outlined in Chapters 13, 14, and 17,
emulation mapping for multi-FPGA emulators requires a series of complex
and interrelated algorithms. As we will see later in this section, emulation
system compilation is complicated by the variety of design features in con-
temporary ASICs. These features include multiple asynchronous clock domains,
multiported memories, and testing and debugging interfaces; which are playing

primarily

with ASIC ¢
GAs make. -
onality of -
h as those
‘onversion
tion more -

r replace

gate-level
simulation
le amount .
or is con- -~
. the num-
:d only by

¢ evalua-

>GA-based
se the fun-
from the

replicated.

evaluation
Iditionally,
debugging -

tion facili-
ation envi-

ging tools.
nn single-
mndreds -of
>GA-based
ces. These
ry devices,
faces. The
mmunica-
designs is
verhead of
15], FPGA
artitioned
apacity.
iical archi-
gns to the
14, and 17,
f complex
emulation

es in con-
¢ domains,
ire playing

30.2 Uses of Logic Emulation Systems 639

an increasingly important role. In assessing modern emulation, the interfaces
between emulators, simulators, logic analyzers, and prototype systems must be
considered. It will be shown that, in the future of FPGA-based logic emulation,
both design compilation and testing interfaces will play a critical role.

To illustrate the complexity of contemporary FPGA-based emulation, the
hardware, compilation, and testing components of a VirtuaLogic VLE-2M
emulation system from Mentor Graphics [21] will be profiled. This commercially
successful systern demonstrates not only the benefits of FPGA-based emulation,
but also some of its limitations.

30.2

USES OF LOGIC EMULATION SYSTEMS

Logic emulation systems are typically used in one of two verification scenarios:
(1) as a physical replacement for an ASIC in a target system, or (2} as a
simulation accelerator. The ASIC replacement approach requires the use of a
physical connection between the emulator and the target system. As shown
in Figure 30.1, one end of the connection typically plugs into connectors on
the emulation system that are interfaced to selected FPGA I/O pins. The other
end of the connection plugs into the location on the target system that would
normally hold the package of the emulated device. This emulation pod typically
has the same pin configuration as the emulated device package. The use of
in-circuit emulation allows for complete target system verification, including the
emulated design and surrounding interfaces and peripherals. Although many
times the target system is forced to operate at clock speeds of 0.5 to 5 MHz,
a substantial amount of system functionality can generally be evaluated via
in-circuit emulation. An attached logic analyzer is often used to probe specific
design signals.

An alternative to in-circuit emulation is coverification (sometimes cailed
cosimulation). In this mode of operation, the logic emulator works in con-

cert with a host workstation to verify an emulated design without the use of

Logic emulator

Host interface oo Emulation & l:l
SenmRans oo
Host workstation Target systom
Probes
Logic
analyzer

FIGURE 30.1 m A typical configuration of a logic emulation system.

640

Chapter 30 = Multi-FPGA Systems: Logic Emulation

a physical target system. Typically, the host workstation (Figure 30.1) performs
the simulation of target system components and provides inputs to the emulated
design via a host interface such as a backplane bus or cable. Design outputs are
returned to the host workstation via the same path. In most cases, only the most
time-consuming portion of the design under test is mapped to the emulator. The
rest is simulated on the companion processor located in the host workstation.
Coverification is often used to concurrently verify software components running
on both the processor in the host workstation and in the emulated design.

In contrast to simulation, the use of in-circuit emulation and coverification
allows for exhaustive prefabrication functional testing [3]. Typically, logic emu-
lation can provide about five to six orders of magnitude speedup versus simula-
tion for a logic design [2, 14]. Numerous commercial ASIC projects have used
coverification to confirm the functionality of end applications with billions of
test vectors prior to chip fabrication [3]. The speed of in-circuit emulation often
allows for complete software system design verification as soon as a functionally
specified ASIC design is complete. In the case of microprocessor design, a signi-
ficant fraction of the emulated processor’s software system can be tested long
before processor fabrication, ensuring the functionality of both hardware and
software. For example, Unix was successfully booted on an emulated M68060
microprocessor in about two hours [14]). This value represents a 40,000 times
speedup over RTL simulation for the same processor operation.

30.3

TYPES OF LOGIC EMULATION SYSTEMS

For many designers of small ASICs, a large, expensive multi-FPGA emulation
system may be unnecessary because one large FPGA and some associated
external memory may be sufficient to implement the entire ASIC design.

30.3.1 Single-FPGA Emuiation

The use of a single FPGA simplifies emulation system mapping because design
partitioning and inter-FPGA routing are unneeded. Often, an unmodified RTL
description of the ASIC design can be resynthesized for the FPGA with the use
of an alternate synthesis library. Standard FPGA compilation tools are then used
to complete the design mapping. As shown in Figure 30.2, the FPGA used for
prototyping is typically mounted on a custom board that receives design fnputs
either from a target system where the completed ASIC design eventually will be
located or from a workstation that provides input test vectors via a download
cable. Additional interfaces are usually provided to allow for connections to a
power supply and a logic analyzer. Since most FPGAs used for prototyping are
SRAM based, resources must be provided to store and download the configura-
tion bitstream to the FPGA at power-up.

As the logic capacity of FPGAs grows, it may appear that an increasing
number of ASIC designs could be prototyped using a single FPGA. However,
since both FPGA and ASIC gate counts follow the same VLSI process trends,

tputs are .
the most
ator. The:
kstation;
i running
sign. _
rification -
gic emu-
s simula-
ave used
illions of
ion often
ictionally
i, a signi-
sted long
~are and
M68060
100 times

mulation
ssociated
.

se design
fied RTL
1 the use
hen used
used for .
m inputs
ly will be
ownload
ions to a
ping are
onfigura-

Icreasing
However,
s trends,

30.3 Types of Logic Emulation Systems 641

Download cable

Target system
interface

SRAM
configuration
memory

Host workstation

Logic analyzer
gic analyze Power supply

FIGURE 30.2 ® An example of a single-FPGA logic emulation system.

it is likely that most ASIC designs will continue to require multiple FPGAs for
verification.

30.3.2 Multi-FPGA Emulation

Contemporary multi-FPGA emulation systems are complex verification platforms
containing hundreds of FPGA and memory chips, high-speed interfaces to target
systems, hosts, logic analyzers, and support for interactive debugging [11]. Since
their initial commercial introduction in 1988, these systems have evolved into
important functional verification platforms [7]. Typical systems include multiple
boards each containing tens of FPGA devices interconnected in a fixed topology.
Interboard communication is performed via fixed connections or a backplane
bus. Because of the need to communicate signals between FPGAs, the typical
frequency of an emulated design is in the range of 0.5 to 5 MHz.

Two distinguishing characteristics of a multi- FPGA logic emulator are the
topology used to interconnect FPGAs and the approach used to communi-
cate interpartition logic signals between them. Before addressing the issues of
topology, two possible approaches for assigning logical signals to inter-FPGA
wires will be analyzed. '

Consider the mapping of a simple circuit shown in Figure 30.3(a) to two
FPGAs as shown in Figure 30.3(b). For this circuit, two interpartition signals
(x and y) exist. One approach to mapping these signals to inter-FPGA wires
is to dedicate them to interFPGA wires A and B, respectively, as shown in
Figure 30.3(b). This dedicated-wire mapping preserves the original structure
of the circuit and does not require the inclusion of any additional logic. In
contrast, the mapping shown in Figure 30.3(c), adds pipeline flip-flops and a
muliiplexer to interpartition signals so that inter-FPGA wire A can be shared.
From the figure it can be seen that wire A is multiplexed to transport both
x and y. This multiplexed-wire approach allows for more efficient use of FPGA

642

Chapter 30-= Multi-FPGA Systems: Logic Emulation

pins and inter-FPGA wires, at the cost of additional FPGA Iogic and flip-flops.
However, in most emulation systerns I/O pins are a more precious resource than
logic and flip-flops.

Both dedicated-wire and multiplexed-wire FPGA-based emulators are com-
mercially available. Dedicated-wire systems include the SystemRealizer [24] ang
Mercury [25] families from Cadence; multiplexed-wire systems include Cadence
Xcite [36] and the Mentor Graphics VirtuaLogic [21] and VStation [22] familieg,
For dedicated-wire systems, design logic partitions must meet both the pin and
gate count requirements of the target FPGAs. In virtually all cases, the FPGAg
are pin limited, constraining the amount of logic and associated /O that can be
assigned to each FPGA. Rent’s Rule [17], an empirical relationship that quan-
tifies the growth of pin requirements as logic capacity increases, indicates that
this problem is likely to get worse as FPGA logic capacity increases. As a result,

>
. >
> >
{a)
S x A JD— b
> y B >
{b)
X
>
A
y
>

(c)

FIGURE 30.3 ® The mapping of a simple circuit (a) by dedicated-wire(b) and multiplexed-wire
(c) assignment.

| flip-flops. :
surce than -

'] families.
1€ pin and
‘he FPGAs

that quan-
icates that
1$ a result,

ed-wire

i are com:-
or [24] and .
e Cadence -

hat can be .

30.3 Types of Logic Emulation Systems 643

the time-multiplexed use of pin resources is prevalent in contemporary emula-
tion systems.

A series of topologles for FPGA interconnection have been investigated
for both dedicated-wire and multiplexed-wire emulators. A number of early
cominercial dedicated-wire emulation systems organized FPGAs primarily in a
neai-neighbor or low-dimensional mesh topology, as illustrated in Figure 30.4(a).
Although these topologies are easy to build, their lack of routing flexibility
complicates design partitioning. Since many interpartition connections may not
have direct FPGA-to-FPGA connections, one or more FPGAs are required to
provide through-hop connectivity. Not only does this make the timing along
interpartition connections unpredictable, but scarce FPGA pin resources must
be dedicated to through-hop connections. As a result, direct-connect dedicated-
wire systems are now used only for emulation systems with a very small number
of FPGAs (typically four or less) [4]. These systems often allow direct connec-
tions between all FPGAs, eliminating the need for through-hops.

In an attempt to provide predictable FPGA delay and eliminate the need for
through-hops, a series of emulation systems were developed that use specialized
crossbar devices called field-programmable interconnect chips (FPICs) iIn
addition to FPGAs [7]. These systems route most or all inter~-FPGA connections
through the FPICs so that the length of each inter-FPGA path is predictable. For
basic systems, such as the one shown in Figure 30.4(b), some of each FPGA’s /0
pins are dedicated to bidirectional connections on each FPIC device forming a
crossbar. As a result, any inter-FPGA connection can be made by passing through
a single FPIC, leading to predictable timing. Multiple levels of FPIC interconnect
allow for system scaling to hundreds of FPGAs. The delay for each individual
path is predictable because the FPIC’s timing is predictable, although the num-
ber of FPICs traversed by different inter-FPGA paths may vary.

Most multiplexed-wire systems use meshes with primarily nearneighbor con-
nectivity [7, 34]. Inter-FPGA paths are pipelined, so each path has a predictable

9830 4000 s000 b
+ + i s
e it e @ o e o Fiter o 3 =t e
sepesl |3Emed] |iEedl |
e M e ° . I3 & o LTh M o
N & ibed ° o i & e < L e xm L
& + ¢+ L
> 4 : —
$HEGAY =
b 4 e ¢ i —
 , He
0 4 iy weuly”
& & ity & L 35
b 4 Z - 4 x“ﬁtlb - & L3 * 3 L3 LS °
=3 o B3 Om& £ Ld ° & EDfE: ° L Ll
- ; P § ;Hi 3 — © Bk ° oELi:E»,O * ° '%Eo
-] ® Lt & — STHIE o H =3 o FITHT & o °
L acad c00e 0600 00090 0000

(a)]

FIGUR! 30.4 w Example FPGA-based logic emulator topologies: (a) mesh; (b} crossbar. Source: Adapted
from Hauck [7].

644

Chapter 30 » Multi-FPGA Systems: Logic Emulation

delay, which is a multiple of the system clock frequency. Additionally, inter-FPGA
routing congestion is overcome by the reuse of inter-FPGA routing resources, elim-
inating the restrictions created by through-hops. Although some multiplexed-wire
systems that use partial or full crossbars (FPICs) have been proposed [19], the
need for these expensive devices in time-multiplexed systems is unclear.

30.3.3 Design-mapping Overview

Several key issues drive the use of logic emulation systems. For most emulation
products, system ease of use and resource utilization are important factors
in system design. The translation of designs from ASIC netlist to multi-FPGA
implementation must be fully or nearly automatic. These ease-of-use issues
require sophisticated multi-FPGA computer-aided design approaches to process
netlists in addition to the per-FPGA processing for numerous individual FPGAs.

A high-level flow for multi-FPGA logic emulation similar to the flow
outlined by Hauck and Agarwal [3] is shown in Figure 30.5. Tt starts with a
circuit description that is specified at the behavioral or register transfer level,
Design translation, which typically includes logic synthesis, converts the high-
level netlist to a gate-level structural equivalent. Following design translation,
design logic is partitioned into pieces that will fit within the logic resources of
individual FPGA devices. Partitioning is often performed to minimize required
inter-FPGA interconnect, control system-wide critical path delay, and localize
memory access. For some systems, partitioning must be performed so that
inter-FPGA routing restrictions in terms of available FPGA pin count and
system topology are considered. If the logic emulator contains memory chips
that are external to the FPGA, design memory must be partitioned across
memory resources to meet memory chip capacity constraints.

Partitioned design logic and memory structures are subsequently assigned
to specific system devices via global placement. For some systems, swap-based
placement algorithms, which are similar to the FPGA placement approaches
described in Chapter 14, are used. A placement cost metric based on distance
and delay is often iteratively used to judge placement quality. Partitioning and
placement are sometimes combined into a single step to concurrently optimize
interpartition bandwidth and inter-FPGA signal delay and distance [8]. The com-
munication of ihterpartition signals between FPGAs is determined based on
routing algorithms. For most multi-FPGA emulators, routing involves the deter-
mination of the shortest feasible path between FPGAs using available board
interconnect resources for each inter-FPGA signal [2]. Topology constraints often
require these signals to pass through intermediate (through-hop) FPGAs.

The last mapping step in logic emulation involves the individual compilation
of the FPGAs. Multi-FPGA emulation systems have a number of constraints that
can lead to less-than-efficient FPGA use. The FPGA compilation step may require
hundreds of individual compiles. If even one design partition fails to success-
fully map to its target FPGA, the emulation flow shown in Figure 30.5 must
be restarted from the design partitioning step. As a result, design partitions are
often sized conservatively to ensure successful compilation.

r-FPGA
s, elim-
ed-wire
19], the

ulation
factors
i-FPGA
- issues
‘process
FPGAs,
e flow
with a
r level,
e high-
slation,
irces of
>quired
ocalize
30 that
nt and
y chips
across

ssigned
>-based
‘oaches
istance
ng and
stimize
€ com-
sed on
: deter-
board
s often

ilation
its that
"equire
1ccess-
5> must
ms are

30.3 Types of Logic Emulation Systems 645

Design translation

{

Partitioning and

Circuit
lob
description global pl;cemgz_nt
Global routing
Individual
FPGA compile

Tech mapping Tech mapping Tech mapping
FPGA placement FPGA placement FPGA placement

FPGA routing FPGA routing FPGA routing

Programming
files

FIGURE 30.5 B A typical multi-FPGA emulator mapping flow. Source: Adapted from Hauck and Agarwal [8].

Although the steps just described define the high-level mapping flow for
FPGA-based logic emulators, the specific partitioning, placement, and routing
approaches used by individual emulators are heavily influenced by the approach
used to communicate intermediate data signals between FPGAs. Although
similar, dedicated-wire and multiplexed-wire emulators require specialized par-
titioning, placement, and routing algorithms.

30.3.4 Multi-FPGA Partitioning and Placement Approaches

Design partitioning and placement play an important role in system perfor
mance for dedicated-wire FPGA-based logic emulators. Because FPGA pins are
such critical resources for these systems, the primary goal of partitioning is
to minimize communication between partitions. A large number of algorithms

646

Chapter 30 = Multi-FPGA Systems: Logic Emulation

have been developed that split logic into two pieces (bipartitioning) and multiple
pieces (multiway partitioning) based on both logic and I/O constraints. Unfor.
tunately, the need to satisfy dual constraints complicates their application to
dedicated-wire ernulation systems.

One way to address the partitioning and placement problem is to perform
both operations simultaneously [8]. For example, a multiway partitioning
algorithm can be used to simultaneously generate multiple partitions while
respecting inter-FPGA routing limitations [28]. Unfortunately, multiway parti-
tioning algorithms are computationally expensive (often exhibiting exponential
runtime in the number of partitions), which makes them infeasible for systems
containing tens or hundreds of FPGA devices. As a result of interrFPGA band-
width limitations and the need for reasonable CAD tool runtime, most dedicated-
wire FPGA emulation systems use iterative bipartitioning for combined
partitioning and placement [6]. This approach has been effectively applied to
both crossbar and mesh topologies [31].

The use of recursive bipartitioning for dedicated-wire emulators creates
several problems. Although it can be used effectively to locate an initial cut,
it is inherently greedy. The bandwidth of the initial cut is optimized, but may
not serve as an effective start point for further cuts. This issue may be resolved
by ordering hierarchical bipartition cuts based on criticality [5].

Partitioning for multiplexed-wire systems is simple compared to the
dedicated-wire case, because it must meet only FPGA logic constraints, rather
than both logic and pin constraints. Unlike the dedicated-wire case, partitioning
and placement are generally performed not simultaneously but rather sequen-
tially [2]. First, recursive bipartitioning successively divides the original design
into a series of logic partitions that meet the logic capacity requirements of the
target FPGAs. During partitioning, the amount of logic required to multiplex
inter-FPGA signals must be estimated because both design partition logic and
multiplexing logic must be included in the logic capacity analysis. Following
partitioning, individual partitions are assigned to individual FPGAs. Place-
ment typically attempts to minimize system-wide communication by minimizing
inter-FPGA distance, particularly on critical paths. To fully explore placement
choices, simulated annealing is frequently used for multi-FPGA placement [2].

30.3.5 Multi-FPGA Routing Approaches

The global routing step determines which FPGAs are used to route 1nter-FPGA
signals. Inter-FPGA routes may directly connect source and destination FPGAs,
or intermediate through-hops may be necessary. Global routing algorithms
typically attempt to minimize distance and inter-FPGA routing resource usage
while ensuring that no routing resources are overused.

The routing problem for dedicated-wire systems is similar to the intra-
FPGA routing problem described in Chapter 17. In dedicated-wire systems, the
amount of available inter-FPGA wiring is fixed, possibly leading to infeasible or
inefficient routes if an effective routing algorithm is not employed. Groups of
wires between FPGAs are considered a communication channel, and inter-FPGA

ultiple
Unfor-
ion to

:rform
ioning

while

parti-
1ential
/stems

band-
icated-
abined
lied to

reates
al cut,
It may
solved

o the
rather
ioning

equen--

design
of the
dtiplex
ic and
lowing
Place-
mizing
:ement
at [2].

*FPGA

PGAs,
rithms
| usage

intra-
ns, the
ible or
wups of
~FPGA

30.3 Types of Logic Emulation Systems 647

routing channels can be represented as a direcied channel graph. As seen in
Figure 30.6, for a direct-connect topology, the edge weight in the channel graph
represents the number of physical wires in the channel [8]. Prior to routing, the
channel graph for the system topology in Figure 30.6(a) can be represented as
in Figure 30.6(b).

As routing is performed, inter-FPGA connections are assigned to wires,
reducing the available capacity in each channel. A variant of maze routing [18]
is typically used to assign inter-FPGA signals to specific system wires. Like the
maze-routing algorithms used for intra-FPGA connections, multiple router iter-
ations are often necessary. The maze-routing algorithm works by selecting a
wire and finding the shortest feasible path from its source to its destination
partition. Multiple iterations involving rip-up may be necessary to complete all
routes.

The example mapping in Figure 30.7 provides an overview of the use of channel
graph representation. Following the assignment of logical signals from the mapped
design in Figure 30.7(a) to inter FPGA wires, the channel availability is modi-
fied to take used wires into account. The effects of this assignment are shown in
Figure 30.7(b), where the modified channels are shown with dashed lines.

For multiplexed-wire systems, both intra-FPGA computation and inter-FPGA
communication are synchronized by a global system clock. This clock provides
control over the sequence of events in the time-multiplexed system. Because
many combinational evaluations and signal transfers occur in a single design
(emulation) clock cycle, the system clock must operate at a faster speed than that
of the design clock of the emulated design. Thus, routing in multiplexed-wire

] - [
FPGA - FPGA
I F ' ;
- - -——— —_———
I 1 F 11 -—————@
2
\ i Y
i -t e
FPGA FPGA 2l | 2
] - e Emd
Fa Fo
[E——— -t e

(a) (b)

FIGURE 30.6 m (a) A multi-FPGA interconnection and (b) the associated channel graph for
dedicated-wire routing., Source: Adapted from Hauck and Agarwal [81. :

Chapter 30 ® Multi-FPGA Systems: Logic Emulation

(a) (b}

FIGURE 30.7 ® Assignment of logic signals to inter-FPGA wires in a dedicated-wire system
{a), and the resultant mapping (b).

systemns assigns each interpartition wire a source—destination path schedule in
both time and space.

Routing for multiplexed-wire systems generally requires two routing steps
to connect an inter-FPGA signal: the determination of a feasible path between
FPGAs and the scheduling of multiplexed signal transport along the path [21.
Initially, a path between source and destination FPGAs is determined using a
shortest-path algorithm. Unlike dedicated-wire routing, the utilization of wires
in the channel is less restrictive because a different signal may be assigned to
each wire on each clock cycle. Following path selection, a data signal can be
transmitted along an inter-FPGA path as soon as it is assigned a valid logic
value by the flip-flop or logic gate that drives it. To complete the transmission,
the signal is assigned to a series of inter-FPGA wires along the path until it
reaches the destination FPGA. One clock cycle of the system clock is allowed
for each inter- FPGA hop along the path. Because inter-FPGA paths are synchro-
nized at FPGA boundaries with pipeline flip-flops, long combinational paths are
effectively broken into a series of discrete timesteps. A number of scheduling
algorithms that perform the assignment of interpartition signals to inter-FPGA
wires have been developed [2, 32].)

The result of routing using multiplexed wires is illustrated in the following
example taken from Tessier and Jana [34]. In Figure 30.8, the circuit shown in
Figure 30.7(a) has once again been partitioned onto FPGAs interconnected using
+he direct-connect FPGA topology shown in Figure 30.6(a). Each inter-FPGA signal
can travel only between two FPGAs during each system clock cycle. In the figure,
pipeline flip-flops, which have been added to allow multiplexed communication
on each path, are shaded. Circuit communication and computation in terms of
system clock cycles can be determined by evaluating the critical path from signal
a to signal d, as shown in Figure 30.9. In both Figures 30.8 and 30.9, system
clock cycles are labeled Vi through Vs. In Figure 30.8, communication delays

?
!

edule in

ng steps

- between

»ath [2].
using a
of wires
igned to
|l can be
lid logic
mission,
unti! it
allowed
synchro-
aths are
reduling
er~-FPGA

sllowing
hown in
ed using
7A signal
e figure,
nication
terms of
m signal
, system
n delays

30.3 Types of Logic Emulation Systems 649

o
Pipeline FFs —~
<N
FIGURE 30.8 m >Circuit mapping to FPGAs for a multiplexed-wire system.
Design
clock
T l |
v Vo Vs Vy Vs
oS I I R T O I I O O e
. Signal a |<—-n—:—1—-{
Signal b —— — |

Signal d I‘_1_>|

FIGURE 30.9 m The design clock cycle for the circuit mapping shown in Figure 30.8. Spans
labeled n indicate a communication delay of n system clock cycles.

are listed, with 7 equal to the number of system clock cycles required for com-
munication. Combinational evaluations. are listed, with a number (e.g., 1). After
system cycle Vs, signal d is latched into a design flip-flop, completing the design
clock cycle.

650

Chapter 30 = Multi FPGA Systems: Logic Emulation

The schedule for this example does not depend on the binary valye
of individual signals. Each interpartition signal is transmitted during each
design cycle, whether or not it has changed. Alternative, dynamic scheduling
approaches, which only transmit changed signals, have also been proposed [16],
For dynamic scheduling, the availability of the communication resources must
be determined at runtime, which can significantly increase the amount of com-
munication control circuitry needed in each FPGA. Kwon and Kyung [16] used
a global controller and a shared bus to control dynamiically scheduled data
movement,

30.4

ISSUES RELATED TO CONTEMPORARY LOGIC EMULATION

30.4.1 In-circuit Emulation

As discussed in Section 30.2, a logic emulation system is often used to replace
design logic in a target system. In-circuit emulation presents a series of chal-
lenges that often must be addressed by the user of the emulation system [11].
Since emulated designs operate at relatively siow clock rates, all or a portion of
the target system must be modified to operate at a clock rate that is substan-
tially less than the planned product clock rate. Special care must be taken to
ensure that actions such as DRAM refresh and device phase-locked loop activity
are not adversely affected. The clock for the target system must be interfaced to
the emulator to control emulator logic evaluation: In some cases, the emulator
provides the target system clock, simplifying synchronization.

30.4.2 Coverification

As described in Section 30.2, coverification requires the logic emulator to verify a
portion of a design at the same time the rest of the design is simulated on a host
workstation. Typically, the physical interface between the host and the emulator
is the limiting factor to coverification performance [12]. A cycle-based approach
to coverification requires a data exchange between the host and the FPGA-based
emulator during each design clock cycle edge. This exchange includes collating
inputs for the emulated design from the simulation database; transferring the
inputs to the host interface via the appropriate software driver, collecting the
generated results from the emulator, and returning the values to the simulator.
The amount of time needed by the host to perform these transfer operations is
often significantly longer than the time to evaluate the logic for a single design
clock cycle on the emulator.

Transaction-based host-emulator interfacing has been introduced as a way
to reduce interface time [12]. In transaction-based interfacing, the host-based
simulator and FPGA-based emulator operate independently for a number
of design clock cycles, limiting the amount of data that must be trans-
ferred across the host-emulator interface. Transaction-based interfacing often

value -

each
huling
1[16].
must

corn-

] used
. data

place
chal-

111

ion of
stan-

en to

tivity
ed to
ilator

rify a
1 host
ilator
roach
sased
ating

g the

g the
lator.
ms is
esign

. way

»ased

mber’
rans-

often

30.4 Issues Related to Contemporary Logic Emulation 651

works best for stream-based computations where dependencies between the
simulated and emulated designs are minimal, allowing independent operation
[27]. A detailed example of transaction-based coverification will be presented in
Section 30.7.

For coverification environments, the simulation performed on the host work-
station can take a variety of forms. Most commonly, ann RTL or behavioral repre-
sentation of a system component written in a hardware description language is
simulated with a commercial HDL simulation tool. Following preliminary veri-
fication, some simulated components may then be synthesized and mapped to
the logic emulator. Alternately, a software version of the simulated system com-
ponents (typically in C/C++) may be used [27].

30.4.3 Logic Analysis
Logic analysis, the capturing of signal state around specific events of inter-
est, plays an important role in FPGA-based logic emulation for both in-circuit
emulation and coverification. Unlike processor-based logic simulation, which
stores intermediate logic signals in a centralized memory, intermediate signals in
FPGA-based emulation are physically distributed throughout the emulation sys-
tem. As a result, for emulation the signal set of interest usually must be selected
prior to compilation so that probing circuitry can be added to the design under
test. The data collected by this circuitry can then be connected to an external
logic analyzer or sent back to the host workstation for display. In some cases,
combinational signals can be reconstructed from saved design flip-flop values via
simulation once emulation is complete [20]. Signal reconstruction allows for a
significant reduction in the amount of probe circuitry required within the logic
emulator, and limits the amount of signal data transferred from the emulator
after each design clock cycle.

Because of their cycle-accurate operation, logic analysis for FPGA-based emu-
lators has several additional, unique characteristics:

a1 FPGA-based emulators can only perform functional verification, so only
combinational and flip-flop values captured on design clock edges
accurately indicate design behavior.

m If the set of design signals selected for probing is changed, one or more
FPGAs may need to be recompiled to implement the change.

® Logic analysis for a design can be triggered by prespecified logic
conditions in the design. This tnggermg circuitry can be added to the
design under test.

Logic emulators can be used to evaluate millions of design clock cycles, so there
often has to be a trade-off between the number of probes and the number of
consecutive clock cycles probing is performed. If emulation can be stopped,
intermediate probe values can be offloaded to the host workstation or to a disk.
Emulation can then be restarted [20]. :

652

Chapter 30 = Multi-FPGA Systems: Logic Emulation

30.5

THE NEED FOR FAST FPGA MAPPING

Commercially available FPGAs are optimized to provide good performance ang
mapping efficiency to a wide range of user designs. As seen in Chapter 1,
contemporary off-the-shelf FPGAs offer a diverse and flexible routing network 1
reach this goal. To achieve modest to high logic resource utilization (e.g., greater
than 75 percent lookup table [LUT] usage) and high design performance, an
FPGA’s mapping tools must perform a detailed evaluation of FPGA placement
and routing choices, typically requiring 30 miniutes to several hours of compile
time per device. As a result, most FPGA-based logic emulators suffer from long
compile times, which is a major limitation to their widespread deployment. The
presence in an emulator of hundreds of FPGAs with significant compile times
can considerably delay the debug, redesign, and retest cycle for a design under
test. As noted in Chapter 20, several research projects have investigated acceler-
ated FPGA mapping to solve this problem.

There are several reasons why fast FPGA design mapping for logic emulation
is important: .

1. The sheer number of FPGAs needed for logic emulation necessitates fast
compilation. If compilation can be accelerated by an order of magnitude, so too,
roughly, can the turnaround time from design change to emulator implementa-
tion. For many systems, faster design turnaround time can make a substantial
difference in emulator usability, especially early in the design cycle when de51gn
errors are more prevalent.

2. A fast mapping is useful for determining if all logic partitions will fit within
emulation system FPGA devices. If any partition fails to map into the emulator,

the entire emulation mapping flow typically must be restarted from scratch.

3. Because multiplexed-wire emulation systems require the use of a
synchronous global clock to coordinate computation and communication, the
overall system clock speed is dependent on the slowest FPGA. A fast evaluation
of achievable clock speed is therefore important. A fast mapping helps identify
if the partitions are likely to meet the emulator’s target system clock speed.

4. The inclusion of probes, which are frequently changed, necessitates a fast
design compilation turnaround. Changes generally affect only a small number
of FPGAs, which usually can be recompiled quickly.

Of the emulation system mapping steps shown in Figure 30.5, the individual
FPGA compiles collectively require over 90 percent of the total compilation
time. However, unlike the other steps, individual FPGA compiles can be easily
distributed to multiple PCs and workstations for parallel compilation [9]. A cen-
tralized server is used to control distribution of the compiles to the client work-
stations, collect the resulting FPGA configuration bitstreams, and verify that all
compilation constraints have been met.

It will be difficult to significantly accelerate compllauon for FPGAs with
existing commercial architectures without a substantial increase in the ratio
of routing resources to logic resources per device or improved parallel mapping

1ance and
‘hapter 1,
etwork to
g., greater
nance, an
slacement
f compile
from long
nent. The
pile times
ign under
d acceler

:mulation

itates fast
1e, so too,
slementa-
1hstantial
en design

- fit within
emulator,
ratch.

ise of a
ation, the
valuation
s identify
peed.

tes a fast
| number

ndividual
npilation
be easily
?]. Acen-
:nt work-
y that all

3As with
the ratio
mapping

30.6 Case Study: The VirtuaLogic VLE Emulation System 653

approaches for individual FPGAs. Fundamentally, FPGA placement and routing
are dedicated resource assignment problems, and the search for a mapping
solution is accelerated only through additional available resources or a par-
allel search. Although compile times for logic emulation can be significantly
reduced by underpopulating commercial FPGA device logic in emulators, the
hardware cost involved is prohibitive. Therefore, parallel FPGA placement and
routing offer the most promise in improving compile times for existing FPGA
architectures.

In many ways, FPGA compilation for a partition of an emulated design under
test is more difficult than FPGA compilation for a single-chip design specifically
created for an FPGA. All FPGA compiles for logic emulators must be performed
with constrained pin assignments because inter FPGA channel assignments are
determined prior to individual FPGA compilation. Forced pin assignments make
designs more difficult to map and require extended FPGA compilation times.
Since partitions were not specifically designed for an FPGA, performance or
utilization issues may sometimes arise during mapping.

30.6

CASE STUDY: THE VIRTUALOGIC VLE EMULATION SYSTEM

To illustrate many of the issues in logic emulation, we consider the VirtuaLogic
VLE emulator from Mentor Graphics [9]. This system represents one point in
a spectrum of similay FPGA-based emulation systems from Mentor Graphics,
including the Avatar and the VStation [23]. The following analysis illustrates
the basic approaches used by this family for system architecture, design compi-
lation, external system interfacing, and coverification.

30.6.1 The Virtualogic VLE Emulation System Structure

Figure 30.10 illustrates the components of the VLE emulation system hardware,
including its interfaces to a host workstation and target system [9]. The system
chassis, shown on the right, can contain up to six multi-FPGA array boards,
which emulate the logic and memory of a design under test. Fwo array boards
are shown in the confisuration in the figure. FEach board contains 64 Xilinx
XC4036XL FPGAs, arranged in an 8 x 8 array, and 32 32K x 32 single-port syn-
chronous SRAM chips. As shown in Figure 30.11, each FPGA connects to its
four nearest neighbors in both horizontal and vertical directions and to FPGAs
two hops away in the horizontal and vertical directions. A single memory device
is shared between each pair of FPGAs. Direct connections between each FPGA
and the six I/O connectors on the array board provide an interface for in-circuit
emulation connections, logic analysis, and host interfacing. As shown in
Figure 30.10, these connectors are located at the front of each board.

The FPGA array boards connect to a passive backplane in the system chassis
to create a scalable system. Each FPGA has direct connections through the
backplane to FPGAs on other array boards. All intra-FPGA computation and
interFPGA communication throughout the system is coordinated via a global

654 Chapter 30 = Multi-FPGA Systems: Logic Emulation

Array boards . Systermn board

Coverification cable e SRR Configuration cable

FIGBRE 30.10 m A Virtualogic VLE-2M logic emulation system with two array boards.

system clock. The system board in the emulator controls the configuration of ‘
array board FPGAs and coordinates the distribution of the global system clock.
Configuration bitstreams are loaded into the system board from the host work-
station via an SCSI-2 cable. '

30.6.2 The Virtualogic Emulation Software Flow

The emulation mapping flow for the Virtual.ogic VLE system follows the flow
outlined earlier in this section. During design translation, an RTL netlist is con-
verted to a gate-level design through the use of RTL synthesis. The mapped
netlist is then partitioned into pieces appropriate for the logic capacity of each
FPGA using algorithms that attempt to minimize bandwidth and encapsulate
critical design paths within individual FPGAs.

Partitioning is performed so that the logic capacity of the FPGA is considered
while partitioning to minimize bandwidih [1, 8]. For the multiplexed-wire VLE
systemn, the number of logic gates required per partition can be represented as

G> Gp +c*P

where G is the number of available gates in the FPGA, Gp is the number of user
design logic gates in the partition, ¢ is a constant representing the amount of

suration of

stem clock.
host work-

vs the flow
tlist is con-
1¢ mapped
ity of each
:ncapsulate

considered
I-wire VLE
. esented as

ber of user
amount of

30.6 Case Study: The Virtual.ogic VLE Emulation System 655

Two-hop

- o
_l . Memory

FIGURE 30,11 m The array board connections for an FPGA in the VLE logic emulation system.

logic required to multiplex a pin, and P is the number of I/O signals associated
with the partition. ‘

Design partitions assigned to an FPGA have a required gate count that is
less than G. The partitioning process for the VLE system starts with an initial
assignment of logic to partitions. Iterative mincut swapping is then performed to
reduce the amount of I/O needed by each partition {the value P in the equation).
Not only does this optimization reduce the amount of subsequent pin multiplex-
ing for I/Os, but the amount of required logic per device is also reduced because
G depends on P [8]. Partitions for this emulation system are subsequently placed
using a simulated annealing placement algorithm [30]. In general, placement is
performed to minimize the overall distance of inter-FPGA connections assuming
that all connections will be scheduled along shortest paths. The logic partition

Chapter 30 = Multi-FPGA Systems: Logic Emulation

to FPGA assignment formulation is similar to the one used to place clusters
inside an island-style FPGA.

A distinctive aspect of the VLE system is the statically scheduled routing
approach used to make connections between signal sources and destinations.
The approach used by the Virtualogic compiler follows that described in
Section 30.4 [8, 34]. All intra-FPGA computation and interFPGA communica- -
tion is synchronized to the global system clock cycle so that multiple system
clock cycles are required to complete an emulation clock cycle. A signal may be
routed between FPGAs on a specific system clock cycle once it is known to be
valid for the current emulation cycle based on signal dependencies. The follow-
ing steps are then taken to perform the statically scheduled routing of the signal
between a source FPGA sy and a destination FPGA d¢ [34]:

1. The shortest feasible path Py; between FPGAs s¢ and df in terms of inter-
FPGA channels is determined. '

2. The send time T of the signal is determined. This is the system clock time
slot at which the signal leaves sg.

3. The signal arrives at FPGA df at the arrival time T, of the signal. The arrival
time is defined as Ty, =15 +n, where n is the number of FPGA chip bound-
aries (hops) between source FPGA s¢ and destination FPGA df.

To ilustrate the use of Ty and T, the schedule of the circuit shown in
Figure 30.8 can be augmented te include send and arrival times. The communi-
cation schedule, including T and T, values, is shown in Figure 30.12. Note that
in Figure 30.8 signal b passes unchanged through FPGA F, on the path from

Design
clock

5 V4 v, V.
stem
yc]ock __J |.__.J L_J

Signal a

Signal b

Signal d

FIGURE 30.12 ® The design clock cycle for the circuit mapping shown in Fagure 30.8, including
send times 7s and arrive times 7a.

30.6 Case Study: The VirtuaLogic VLE Emulation System 657 ‘
\

FPGA F;3 to FPGA F|. This through-hop is necessary given the lack of a direct
FPGA F; to FPGA F; connection.

After each interpartition signal is scheduled for communication, the chosen
schedule is implemented by synthesizing multiplexers, registers, and state

clusters

. routing °
inations.

ribed in machines that are added to the circuit partition for each FPGA. The result-
munica- ing circuits are then applied to standard Xilinx Foundation design-mapping
[2 system tools [37].
' 1 may be Most ASIC designs that are targeted for emulation contain complex logic
wn to be and memory structures that require specialized processing outside the standard
’ e Tollow- emulation mapping flow. For VLE systems, specialized mapping techniques have
' 1e signal - been developed to map complex design memories to emulation system memory
r : chips [1], to map designs that contain multiple asynchronous design clocks
| i [13], and to incrementally map design changes [34]. The algorithms created to
‘ of inter- address these mapping issues are important keys to system usability.
| ock time 30.6.3 Multiported Memory Mapping
‘ e arrival In a VLE system, multiple accesses to a 32K x 32 synchronous single-ported
) bound- SRAM can be scheduled within a design (emulation) cycle to emulate the
behavior of a multiport RAM. For example, Figure 30.13(a) shows a user-
‘ specified dual-port memory with two read ports and a single write port. During
10wn in an emulation cycle access that requires reads from both read ports, both reads
mmuni- can be performed in sequence from the single-ported SRAM chip. As shown in
‘ Iote that Figure 30.13(b), a state machine can be used to sequence the application of the
ith from addresses to the single-ported SRAMs, and the storage of the read data in the

output registers.

The VirtuaLogic compiler determines the schedule for data accesses in con-
junction with routing address, data, and control signals to the on-board phys-
ical memory devices. Although not shown in the Figure 30.13, for data wider
than the width of the physical memory, memory accesses can be made by
sequentially accessing consecutive memory locations. For example, a read of a
128-bit value requires four system clock cycles. Dependency relationships for
multiported RAMs (e.g., read-afterwrite) can be handled via the sequential
scheduling of RAM accesses.

30.6.4 Design Mapping with Multiple Asynchronous CIocks

In Section 30.4 it was shown that for multiplexed-wire systems both intra-FPGA
computation and inter-FPGA communication are coordinated to a global system
clock. Because multiple system clock cycles are required to perform computa-
tion and communication for a single emulation clock cycle, a fixed relationship
must exist between the clocks. Many contemporary ASIC designs contain mul-
tiple design clocks that operate asynchronously to each other. While synchro-
nization between a system clock and a single design clock can be addressed
by rising design clock edges that delineate functional evaluations, deriving a
relationship between multiple asynchronous design clocks and a system clock
is more difficult.

1cluding

658

Chapter 30 » Multi-FPGA Systems: Logic Emulation

A
RAD — \ A SRAM
RA1 Adr
WA A
WD D ——ij\? D Data
A D . - =4
——s{ RAQ RDO (- D : WEN
—~—= RA1 RD1 L OEN
A RD1 = 0 QD
——{ WA Ld
D
—— WD
WEN Memory
el WEN CLK FSM

(@) ®)

FIGURE 30.13 m A mapping of a multiported design memory to a single-ported emulator memory:
(a) parallel-accessed multiport memory; (b) sequentially accessed single-port multiplexed memory.
Source: Adapted from Agarwal [1].

In the circuitry shown in Figure 30.14, taken from Kudlugi and Tessier [13],
the asynchronous clocks CLK1 and CLK2 drive state elements. It can be seen
that signal N5 is a multidomain signal because it changes value and is sampled
as a result of both CLK1 and CLK2 clock transitions. Now consider a situation
where the circuit in Figure 30.14 is partitioned so the multidomain signal N3
must be transported from FPGA 1 to FPGA 4 as shown in Figure 30.15.In a
multi-FPGA VLE system, the physical wires that connect FPGAs are grouped
into unidirectional channels, where each physical wire is capable of carrying
multiple signals that belong to the same emulation clock domain (e.g., CLK1
or CLK2). _

Signal routing may include several intermediate FPGA hops. To simplify
scheduling, logical signals assigned to the same inter-FPGA wire must be asso-
ciated with the same clock domain. For designs with multidomain signals, this
restriction requires that each multidomain signal be logically split into separate
single-domain versions prior to transport. These single-domain values are then
transmitted separately along separate physical channel links and combined at
the destination to support multidomain behavior. Unfortunately, this approach
of separately routing copies of the same signal along different links can lead to
scheduling problems because each copy may arrive at the destination at differ-
ent system clock cycles.

This issue is best illustrated through an example. As shown in Figure 30.15,
communication for each asynchronous clock domain takes place over a different

30.6 Case Study: The VirtuaLogic VLE Emulation System . 659
—_— N1 ' N5
SRAM D Q - D Q
N3 N6
CLK1
ki BTSN
FF1 FF3
a1
N2
D Q Mo a
N7
CLK2 > N4 CLK2 >
FF2 FF4
FIGURE 30.14 m A circuit that requires clocks from multiple asynchronous clock domains.
5%? ' .
[tor memory: i |
xed memdry. i |
Domain D1 |
FPGA 1 channels FPGA 4 |
’ sssier [13], ‘ : o |
' be seen N3 "D FF3 ‘
s sampled - NS Sy |
1 1 situation Mommma s B >— |
; N4 - , 4
signal N5 - SN FF4 !
0.15. In a ‘ - |
e grouped AL s B ‘
f carrying "
>E-r CLK1 é § . Domain D2 ___ E : ‘
. . Vi - - . channels Vo ‘
5 simplify il Pl |
st be asso- FPGA2 i3 ‘ -4 FPGA3 ‘
gnals, this . - |
0 separate
sare then ~ of@e.. (0 UUN \
; FPGA o o FPGA
mbined at Hop - ¥ HOP ‘
approach E i
-an lead to |
1 at differ-
ure 30.15, FIGURE 30.15 = Ari example of multidomain signal transport. Sourcé: Adapted from Kudlugi and
a different ’) ,

Tessier [13],

| '
E

Chapter 30 » Multi-FPGA Systems: Logic Emulation

set of inter-FPGA channels. In the case of N5, paths using both domain 1 (D1)
and domain 2 (D2) channels are needed to transport N5 between FPGA 1 ang
FPGA 2. The disjoint nature of multiple routing paths for the same logical signa}
can lead to differing arrival times for the copies of signal N5 at the destinatiog
FPGA. If both copies of signal N5 leave FPGA 1 at the same time, the D1 version
of the signal will arrive at FPGA 2 two system clock cycles before the D2 version,
This arrival order can lead to an incorrect logic evaluation if an attemnpt is made
to use the D1 version of the signal before the D2 version arrives:

A requirement in transporting multidomain signals is to ensure that causality
of events is guaranteed irrespective of routing delays. Causality can be preserved
by ensuring that the length of the route for each domain from the source to the
destination requires exactly the same number of systemn clock cycles. This can
be accomplished by requiring the scheduler to use the same number of system
clock cycles to communicate versions of the same signal to a destination FPGA.
In Figure 30.16, for example, the scheduler must determine a path from FPGA 1
to FPGA 2 of length 3 for domain D1, since this is the path length of the domain
D2 version. Each path now contains three pipeline flip-flops. The determination
of the specific schedule may require several scheduling iterations because the
length of the longest path is not known until each path is initially scheduled.

The scheduler used by the VirtuaLogic compiler takes multidomain paths
into account and can handle designs with any number of asynchronous clock

Domain D1

FPGA 1 channels FPGA 4
N3 N5 . "_"_—l; --------- ! lFFC‘a
N\ R\ B — 5
N4
—{]~
A B
T 13
E ' < Domain D2 ‘ :
P channels .
FPGA2 it ‘ -4 FPGA3
FPGA ity 2 FPGA
HOP Attt el ’ HOP

FIGURE 30,16 m A retimed version of the multidomain signal transport shown in Figure 30.15.

1ination
wse the

11 (D1).
Aland.

al signal

tination

version

versiorn.-
is made |

ausality -

‘eserved

e to the .

“his can
* systern

1 FPGA.
FPGA 1"

domain

duled.
n paths

1s clock:

|

} FF4

30.15.

30.6 Case Study: The VirtuaLogic VLE Emulation System 661

domains. The mapping of this multidomain logic to the emulator takes place
automatically. The asynchronous design clock signals may be interfaced to the
emulator from outside the system through the system board.

30.6.5 Incremental Compilation of Designs

The need for incremental design support in VLE systems is a result of recent
interest in core-based design and system-on-a-chip integration. Most ASIC ver-
ification flows involve numerous iterations of design test, debug, and recom-
pilation. As modifications are evaluated and errors are identified, the original
design is subjected to a series of minor modifications. Often, a change may be
isolated to a component that was originally spread across two or more FPGAs
in the emulator. If emulator recompilation can be limited primarily to those
FPGAs that contain logic affected by the change, the compilation process can
be greatly accelerated. The ability to support design changes in a small set of
FPGAs is crucial to avoid the need to recompile all FPGAs in the system from
scratch. In addition to providing fast design turnaround, the resulting emulation
performance of the incrementally compiled design should be the same or close
to the same as the performance of the original design mapping [34].

The use of scheduling for VirtuaLogic inter-FPGA routing facilitates the man-
agement of incremental design compilation. A series of steps are required to
address changes in the design and map them to the FPGA-based emulator [34]:

1. Netlist comparison. The first step in the incremental compilation process is
to identify the logic and interconnect associated with the initial design that is no
longer in the modified design, Subsequently, the logic and interconnect added
to the initial design to create the modified design are identified. Logic removed
from the initial design was assigned to a set of FPGAs as a result of initial design
mapping. These modified FPGAs provide a possible destination for added logic.

2. Incremental path identification. In the VLE system, individual FPGAs may
serve as through-hop steps for intermediate routes. Thus, even if a given FPGA
does not contain logic that has changed, these FPGAs will require recompilation
if they are used as through-hops for the modified logic. To limit compile time, the
number of unmodified FPGAs selected to perform through-hop routing should
be minimized.

3. Incremental partitioning. Once the modified and required through-hop
FPGAs have been identified, newly added design logic can be partitioned onto
them subject to processor logic and memory capacity constraints.

4. Incremental routing. Following incremental partitioning, routing is per
formed to create a path for the added design signals connecting the modified
FPGAs. Because FPGAs surrounding the modified FPGAs are unaltered, this
incremental routing must be performed using board-level routing resources that
have not been consumed by unchanged design routes. Feasible shortest paths

 between FPGAs are evaluated and then incremental scheduling is used to form

a communication pipeline.

Chapter 30 = Multi-FPGA Systems: Logic Emulation

The most important part of incremental compilation for multiplexed-wire
systems is the scheduling of added signals onto available inter-FPGA wires
(incremental routing). In some cases, portions of previously routed inter-FPGA
links may need to be rerouted as a result of changed logic depth and depen-
‘dency. Consider the circuit shown in Figure 30.17, taken from Tessier and Jana
[34]. The circuit is the same as the one assigned to FPGAs in Figure 30.8 except
that the OR gate F and signals e and f have been added. One potential incre-
mental mapping for the modified circuit appears in Figure 30.18. A design clock

FIGURE 30.17 m A modified version of the circuit assigned to FPGAs in Figure 30.8.
Source: Adapted from Tessier and Jana [34].

FIGURE 30.18 m An incremental mapping of the circuit shown in Figure 30.17.

xed-wire
A wires
er-FPGA
1 depen-
ind Jana
8 except
al incre-
gn clock

30.6 Case Study: The VirtuaLogic VLE Emulation System 663

cycle associated with the scheduled route of the circuit mapping in Figure 30.17
is shown in Figure 30.19. :

When these waveforms are compared to the waveforms in Figure 30.12, it can
be seen that an extra cycle of combinational delay has been added because of
the OR gate evaluation in FPGA F,, extending the number of system clock cycles
needed to evaluate the design. Closer examination of the two sets of waveforms
indicates that although signal b was previously routed between FPGA F, and
FPGA Fj in the initial design, it will have to be rerouted for the modified map-
ping. For the initial design, signal & has been routed between FPGA F, and FPGA
Fi on system clock cycle Vy. As a result of the mapping shown in Figure 30.18,
signal & cannot be routed until system clock cycle V5 because of combinational
dependencies. This resulis in a need to recompile both FPGA F; to transmit the
signal on cycle Vs and FPGA F; to receive the value on system clock cycle Vs.

After dependencies are defermined, the new links are scheduled for communi-
cation using the Virtual.ogic compiler two-step routing approach described ear-
lier. Only added interpartition signals are routed; previously routed signals that
are unchanged are left in place. Incremental routing of added signals may lead
to an emulation system performance loss. For example, the waveforms shown in
Figure 30.19 represent the schedule of the incrementally modified design shown
in Figure 30.17. The new schedule requires six system clock cycles to complete a
design clock cycle as opposed to the five required for the original design. Although
not shown in Figure 30.19, a global control signal distributed to all FPGAs indi-
cates the end of the design clock cycle. Following recompilation, this signal can
be asserted every six rather than five system clock cycles. This requires FPGAs

Design
clock 1 I——

besvnsl A I I I Y s T O A I O
clock

Signal a =1
Ts 75
Signal f | 1] FPGA F, FPGAF,
T, T, l
Signal b l‘ 1 'I' =1 I

Signal d o]

FIGURE 30.19 m The design clock cycle for the incremental mapping shown in Figure 30.18.

664

Chapter 30 = Multi-FPGA Systems: Logic Emulation

that were not recompiled to hold data values for an extra system clock cycle whie :
the recompiled FPGAs complete computation. All results are then clocked int,
design flip-flops system-wide after six clock cycles by the design clock.

30.6.6 VLE Interfaces for Coverification

The VLE system has a number of interfaces to support both in-circuit emulatioy
and coverification. For in-circuit emulation, an emulation pod can be interfaceq
to one of six connectors on each of the array boards shown in Figure 30.10,
These signals are directly connected to FPGAs and drivefreceive IO signals on -
the emulated design. Tuned clock cables are used to control clocking both on the
target system and in the emulator when the emulator has completed evaluation -
for an emulation clock. To permit in-circuit emulation the target system must
be slowed to accommodate the 0.5- to 2-MHz design emulation rate.

In addition to support for in-circuit emulation, the VLE emulator has sig.
nificant support for a variety of coverification modes. This support is primarily
provided through a series of software interfaces created at the host workstation
and on the emulator. These interfaces allow the emulator to be used in a variety
of coverification scenarios [9]. Designers initiate ASIC verification by represent-
ing the ASIC using a high-level language such as C or SystemC (a C-compatible
language that represents the concurrency and clocking associated with hardware
implementations). As a design matures, portions of it are migrated to hardware.
Inputs and outputs to the portion of the design on the emulator are lnterfaced
to the emulator via an application programming interface (API).

The transfer, execution, and collection of results using the emulator can be
represented as shown in Figure 30.20. This implementation of coverification is
performed with a series of components. The software test environment interacts
with an application adapter—that is, an interface to a series of library-based
drivers that packetize the data and prepare it for transfer via a PCI-based board.
The use of library-based drivers allows for communication at functional, bus-
cycle-accurate, and cycle-accurate levels [27].

An interface circuit is required at the destination to reassemble data for sub-
sequent use as input to the design. A transactor accepts the reassembied data,
generates an emulation clock for use with the design under test, and coordinates
per-cycle data transfer to and from the design. Generally, the interface circuit
and trapsactor are created in RTL and added to the design. VLE systems use
the transaction-based approach described earlier in this section. Transactions
contain both data and synchronization information. A single transaction results
in multiple verification cycles of work being performed by the emulator. The
transaction can be as simple as a memory read or as complex as the transfer
of an entire structured packet through a channel. To support coverification, the
host for the VLE emulator contains an SPCI (Springtime PCI) card [27]. This
custom PCI card implements the physical layer of transaction-based interfacing
between the host and the emulator via a cable.

The transaction application protocol interface (TAPI) forms the application
adapter for the VLE system [27]. TAPI consists of a library of C functions. The

vcle while
ocked into

emulation

interfaced
ure 30,10,
signals on
oth on the

evaluation

stem must

or has sig-
s primarily
rorkstation
n a variety

represent--
:ompatible

1 hardware
hardware.
interfaced

tor can be
ification is
1t interacts
rary-based
ised board.
ional, bus-

ita for sub-
abled data,
oordinates
ace circuit
ystems use
‘ansactions

dion results

ulator. The
he transfer
cation, the
. [27]. This
interfacing

application :
ctions. The

30.6 Case Study: The VirtuaLogic VLE Emulation System 665

Clock cycle
accurate pin
events

Transactions Transactions

@ ®

FIGURE 30.20 ™ The coverification flow between the workstation (a) and the emulator (b).

adapter is a utility package that converts raw signals into transactions by making
calls to the C function library. It supports a verification environment that allows
a C model to interact with an RTL model running on the emulator. The transfer

‘of data across the host-emulator cable can be aided by buffering data in mem-

ory and transferring it as a block. This approach is preferable to the individual
transfer of values from discrete memory locations in a file. Data buffering in
arrays can be implemented in the same C modules that contain the TAPI driver
calls for the emulator.

For the VLE system, the emulator system clock speed is set to 30 MHz. The
same six multi-FPGA board connectors used for interfacing to an in-circuit emu-
lation pod can also be used as an interface for coverification. The remaining con-
nectors on the multi-FPGA boards can allow for direct access to logic analyzers
for signal probing.

30.6.7 Parallel FPGA Compilation for the VLE System

" Given the number of FPGAs in the VLE system, parallel compilation of the indi-

vidual devices is a necessity. An FPGA compile server is used to distribute the
numerous Xilinx XC4036XL compiles out to a number of available workstations
that can perform the needed operations [9]. Unfinished compiles are held in a
queue until compilation resources become available. Following design compila-
tion, configuration bitstream information and status reports are returned to the
server for subsequent transfer to the emulation system.

666

Chapter 30 » Multi-FPGA Systems: Logic Emulation

30.7

FUTURE TRENDS

Although FPGAs have played an important role in the development and
success of commercial logic emulation hardware, current trends indicate z
possibly reduced role for them in future emulation systems. Over the past fey
years, special-purpose custom logic processors have replaced FPGAs in a num-
ber of commercial emulation systems [26, 35]. Processor-based emulators gener.
ally contain a series of logic resources that perform a different Boolean functiop
during every system clock cycle [10]. Data values, which are stored in on-chip
RAM, are supplied to the logic resources every cycle via time-multiplexed on-

_chip routing resources. The per-cycle logic function definition and routing con-

figuration information form instructions that are stored in on-chip instruction
memory.

The depth of the memory constitutes the amount of multiplexing that can be
performed both on the processor and in the interprocessor interconnect struc-
ture. Like multiplexed-wire FPGAs, interprocessor communications are time-
sliced based on combinational logic dependencies so that Processor pins are
reused, '

In general, the compile time for processor-based emulation is very fast
compared to FPGA-based emulation. This disparity is a result of the assign-
ment of intra-FPGA (processor) logic to interconnect resources. In multiplexed-
and dedicated-wire emulation systems, internal FPGA logic and interconnect are
dedicated to specific design resources. This has three implications:

1. For long combinational paths, each logic block and intra-FPGA wire
is used only a small fraction of the time, effectively limiting system

. efficiency.

2. The dedicated assignment of signals to intra-FPGA wires is a problem of
limited resource allocation. To significantly reduce compile time, a sub-
stantial increase in routing resources is needed relative to available logic
to make FPGA routing linear time (a value of at least 20 percent is reported
by Swartz et al. [33]). According to Rent’s Rule, this disparity is likely to
become worse as designs and FPGAs increase in size. '

3. Because FPGA routers are unpredictable, it is impossible to determine both
whether a device will route and what the per-FPGA (and hence global sys-
tem) performance will be until all FPGAs have been successfully mapped.

In contrast, in processor-based emulator hardware, internal logic and routing
structures are time-multiplexed. As a result, simpler routing structures with fixed
memory to processor delays for all intra-processor paths are set. This, too, has
implications: ‘ : :

1. Logic and interconnect resources are multiplexed over time to increase
resource use efficiency per clock cycle. _

2. The assignment of both inter and intra-FPGA resources is a scheduling
problem. Unlike search-based FPGA routing, scheduling algorithms

| ment and

tors genér-
n function
in on-chip
plexed on-
uting con-
nstruction

hat can Be

nect sﬁruc- .

are time-
r pins are

very fast
he assign- -

ultiplexed-

onnect are .

"PGA wire -
ng system:

yroblem of
e, a sub-
lable logic
is reported

is likely to

rmine both

global sys
ly mapped.

nd routing
s with fixed
is, too, has"

to increase -

scheduling
algorithms -

30.8 Summiary 667

typically can be performed quickly and have runtimes largely proportional
to circuit combinational depth.

3. The global systemn clock period is fixed by the arch1tecture of the device,
not by individual designs.

Specialized logic processors have other potential benefits. Specialized c1rcu1try
for signal probing and coverification transactions do not have to be fashioned
out of generic FPGA logic, but rather can be customized to 11m1t silicon overhead
and optimize speed.

FPGA-based emulators do have some advantages. In some cases, they may
provide more parallelism for certain designs that have shallow combinational
depth. Rather than multiplexing logic resources, FPGAs can perform all logic
operations simultaneously. The use of specialized logic processors in emula-
tion introduces additional overhead for the emulation system provider. Because
FPGAs typically use the newest silicon fabrication processes, specialized logic
processors are likely to be at least one silicon generation behind the state of the
art. Additionally, mapping tools for the logic processors must be developed and
maintained by the emulation company rather than by the FPGA vendor. Recent
trends indicate that despite these issues, the benefits of orders of magnitude
faster compile time are driving emulation vendors in the direction of special-
purpose logic processors.

Several developments in the deSIgn of FPGAs may swing this trend back in
their favor. Recent FPGAs provide high-speed 1/Os such as low-voltage differen-
tial signaling (LVDS) that support rapid I/O multiplexing. Additionally, the intro-
duction of fixed cores, such as multipliers and microprocessors, may provide
faster mapping and higher performance for emulation once they are integrated
in the emulator compilation flow.

30.8

SUMMARY

FPGA-based logic emulation is a dlstmct example of a commercially successful
reconfigurable computing application. A key aspect of its success has been the
development of sophisticated software systems that can seamlessly map a large
ASIC design to hundreds of FPGAs with minimal or no de51gner intervention.
An important characteristic of most multi-FPGA emulators is the scheduling
of both intra-FPGA computation and inter-FPGA communication in concert
with a global system clock. The use of scheduling overcomes limited FPGA pin
resources and takes advantage of signal dependencies, so that only portions of
a design are active at a given time. Contemporary multi-FPGA logic emulators
are used as both physical replacements in circuit and as coverification engines
to accelerate design simulation. These supporting environments have advanced
in récent years to include multiple asynchronous clock domains and support for
incremental design changes.

Extended compile times are quickly becormng a dominant issue for FPGA-
based emulators, and have motivated the development of fast FPGA compile

668

Chapter 30 = Multi-FPGA Systems: Logic Emulation

approaches. Although emulation systems with custom-designed logic processors
have been developed, recent FPGA trends and faster compile approaches may
spur renewed interest in FPGA-based emulation.

References

[1] A. Agarwal. VirtualWires: A Technology for Massive Multi-FPGA Systems, Mentor
Graphics Corp., 2002. :

[2] J. Babb, R. Tessier, M. Dahl, S. Hanano, D. Hoki, A. Agarwal. Logic emulation with
virtual wires. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 16(6), June 1997.

[3] M. Butts. Future directions of dynamically reprogrammable systems. I[EEE Custom
Integrated Circuits Conference, May 1995. .

[4] C. Chang, K. Kuusilinna, B. Richards, R. Broderson. Implementation of BEE:;
A real-time, large-scale hardware emulation engine. ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, February 2003.

[5] S. Hauck, G. Borriello. Logic partition orderings for multi-FPGA systems.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
February 1995.

[6] S. Hauck, G. Borriello. An evaluation of bipartitioning techniques. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16(8),
August 1997.)

[7] S. Hauck. The role of FPGAs in reprogrammable systems. Proceedings of the IEEE
86(4), April 1998. ‘

[8] S. Hauck, A. Agarwal. Software Technologies for Reconfigurable Systems, Technical
report, Department of ECE, Northwestern University, 1996.

[9] IKOS Systems. VirtuaLogic VLE Emulation System Manual, 2001.

[10] D. Jones, D. Lewis. A time-multiplexed FPGA architecture for logic emulation.
IEEE Custom Integrated Circuits Conference, May 1995. .

[11] H. Krupnova, G. Saucier- FPGA-based emulation: Industrial and custom
prototyping solutions. International Conference on Field-Programmable Logic and
Applications, August 2000.

[12] M. Kudlugi, S. Hassoun, C. Selvidge, D. Pryor A transaction-based unified
simulationfemulation architecture for functional verification. ACM/IEEE Design
Automation Conference, June 2001.

13] M. Kudlugi, R. Tessier. Static scheduling and multidomain circuits for fast
functional verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21(11), November 2002.

[14] J. Kumar. Prototyping the M68060 for concurrent verification. IEEE Design and
Test of Computers 24(1), January 1997. ‘

[15] I Kuon, J. Rose. Measuring the gap between FPGAs and ASICs. International
Symposium on Field-Programmable Gate Arrays, February 2006.

[16] Y. Kwon, C. Kyung. Performance-driven event-based synchronization for multi-
FPGA simulation accelerator with event time-multiplexing bus. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 24(9), September 2005.

[17] B. Landman, R. Russo. On a pin versus block relationship for partitioning of logic
graphs. JEEE Transactions on Computers C20(12), December 1971.

[181 C. Lee. An algorithm for path conmections and its applications. IRE Transactions
on Electronic Computers EC-10(2), September 1961. '

JrOCessors
iches may

- ns, Mentor

dation with
ted Circuits

EE Custom

‘ m of BEE:
1ternationagl

A systems. .

ite Arrays,

jues. IEEE
tems 16(8),

of the IEEE

S, Technical

emulation.

nd custom
e Logic and

sed unified
EEE Design

its for fast .

| of Integrated
| Design and
nternational
n for multi-
Transactions

ember 2005.
ning of logic

- Transactions

[191
(20]
[21]
(22}
(23]
(24]
[25]

[26]
[27]

(28]
[29]
[30]
(311
[32]
[33]
(34]
[3s]

[36]
[37]

30.8 Summary 669

I. Li, C-K Cheng. Routability improvement using dynamic interconnect architec-
ture. IEEE Workshop on FPGA-Based Custom Computing Machines, April 1995.

J. Marantz. Enhanced visibility and performance in functional verification by
reconstruction. ACM/IEEE Design Automation Conference, June 1998.

Mentor Graphics Corp. VirfualLogic Datasheet, 2002.

Mentor Graphics Corp. VStation Datasheet, 2004,

Mentor Graphics. Emulation products web page: http//www.mentor.com/emulation,
April 2006. ,

Quickturn Design Systems. System Realizer Data Sheet, 1998.

Quickturn Design Systems. Merciiry Data Sheet, 1999,

Quickturn. Design Systems. Cobalt Systems User Guide, 2001.

R. Ramaswamy, R. Tessier. The integration of SystemC and hardware-assisted
verification. International Conference on Field-Programmable Logic and Applications,
September 2002. _

K. Roy-Neogi, C. Sechen. Multiple FPGA partitioning with performance
optimization. ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, February 1995.

M. Santarini. ASIC prototyping: Make versus buy. EDN, November 21, 2005.

K. Shahookar, P. Mazumder. VLSI cell placement techniques. ACM Computing
Surveys 23(1), June 1991.

G. Snider, P. Kuekes, W. Culbertson, R. Carter, A. Berger, R. Amerson. The Teramac
configurable compute engine. International Conference on Field-Programmable Logic
and Applications, August 1995,

H. Su, Y. Lin. A phase assignment method for virtual-wire-based hardware
emmulation. [EEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 16(7), July 1997.

J. S. Swartz, V. Betz, J. Rose. A fast routability-driven router for FPGAs. ACM/
SIGDA International Symposium on Field-Programmable Gate Arrays, February
1998.

R. Tessier, S. Jana. Incremental compilation for parallel verification systems. IEEE
Transactions on VLSI Systems 10(5), October 2002.

Tharas Systems. Tharas Hammer Product Brief, 2002.

P. Tseng. Reconfigured engines REV simulation. EE Times, July 10, 2000.

Xilinx, Inc. Xilinx Foundation Tools User Guide, 2002,

	Chapter 30_1-10.pdf
	Chapter 30_11-20
	Chapter 30_21-30
	Chapter 30_30-end

